Abstract
In the vision of intelligent transportation, vehicles are expected to feature with advanced applications, such as automatic road enforcement, dynamic traffic light sequence, and autonomous driving. Therefore, real-time and fast dynamic information exchanges are required, and vehicle-to-everything (V2X) communications are highly demanded. In this work, the channel characteristics of vehicular communication are analyzed in the millimeter-wave (mmWave) band at 22.1-23.1 GHz. Specifically, two types of links (the satellite link and the terrestrial link) are considered in urban and highway scenarios with different weather conditions. The ray-tracing simulator together with calibrated electromagnetic parameters is employed to practically generate wideband channels. The key channel parameters of each link including the received power, Rician K -factor, root-mean-square delay spread, and angular spreads are explored. The co-channel interferences between the two links are analyzed as well. The observations and conclusions of this work can be useful for the design of V2X communication technologies.
Links
BibTeX (Download)
@article{Yan2019, title = {Channel Characterization for Satellite Link and Terrestrial Link of Vehicular Communication in the mmWave Band}, author = {Dong Yan and Haofan Yi and Danping He and Ke Guan and Bo Ai and Zhangdui Zhong and Junhyeong Kim and Heesang Chung}, doi = {10.1109/ACCESS.2019.2956821}, issn = {2169-3536}, year = {2019}, date = {2019-01-01}, urldate = {2019-01-01}, journal = {IEEE Access}, volume = {7}, pages = {173559-173570}, abstract = {In the vision of intelligent transportation, vehicles are expected to feature with advanced applications, such as automatic road enforcement, dynamic traffic light sequence, and autonomous driving. Therefore, real-time and fast dynamic information exchanges are required, and vehicle-to-everything (V2X) communications are highly demanded. In this work, the channel characteristics of vehicular communication are analyzed in the millimeter-wave (mmWave) band at 22.1-23.1 GHz. Specifically, two types of links (the satellite link and the terrestrial link) are considered in urban and highway scenarios with different weather conditions. The ray-tracing simulator together with calibrated electromagnetic parameters is employed to practically generate wideband channels. The key channel parameters of each link including the received power, Rician K -factor, root-mean-square delay spread, and angular spreads are explored. The co-channel interferences between the two links are analyzed as well. The observations and conclusions of this work can be useful for the design of V2X communication technologies.}, keywords = {5G, mmWave, radio propagation, ray-tracing, satellite, vehicular communications}, pubstate = {published}, tppubtype = {article} }